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Abstract 
DOP (Dilution of Precision) “defines” how good a position fix is.  If only it was so simple.  Like 
too many statistical metrics, DOP depends more on the assumptions underpinning the 
analysis than on the data from which the fix is computed.   

It is well known in the surveying community that symmetric geometries are highly beneficial 
where accurate, unbiased position solutions are desired.  However, where symmetry is 
lacking, such as at the edge of a tracking range, biased fixes are likely to result.  
Significantly, the usual DOP analysis and metrics do not identify this performance shortfall 
and are seriously flawed. 

As tracking range deployments become more frequent, performance analysis techniques and 
tools are increasingly important to mission success.  The limitations of the DOP paradigm 
and an alternative metric which encompasses intuition and is in operational use will be 
described with comparative examples presented. 

Introduction 
The focus of this paper is on defining insightful analysis techniques for underwater tracking 
range design.  The techniques are targeted at relatively complex problems commonly 
involving tens of sensors, propagation constraints and bottom bathymetry.  Self evidently, the 
techniques are applicable to other, similar sensor network optimisation problems. 

This paper is, of course, in the Practical Results session.  However, for the usual reasons of 
confidentiality, it must eschew the use of client’s data sets.  Additionally, the techniques 
considered are analytic techniques for use a priori generally before a range has been 
deployed and objective performance data obtained.   

Nonetheless to quote Kurt Lewin [1] “There is nothing so practical as a good theory”.  We 
consider, based on practical experience, that the techniques presented are an example of a 
good theory, which appropriately applied, benefits the art of navigation.  The examples 
presented are both synthetic and, in the case of the European Loran stations, wholly 
practical. 

Emeritus Solutions Ltd is of course experienced in the analysis and synthesis of underwater 
tracking  range layouts, with a profound understanding of the applicable mathematics, to 
underpin their analysis tools.  Emeritus Solutions Ltd can provide (bespoke) tools for 
requirements ranging from range layout analysis and synthesis, through the computation of 
tracking solutions and sensor boxing, to the detailed analysis of range and environmental 
data.  Equally, Emeritus Solutions Ltd can draw on a wide range of underwater acoustic, 
digital signal processing, computing and electronics competencies.  These offerings can be 
provided on a turnkey, service or consultancy basis. 

http://www.emeritus-solutions.com


© Emeritus Solutions Ltd 2008  Page 2 of 9 

This paper first identifies key aspects of the underwater positioning problem, which both 
differentiate it from the GNSS (satellite navigation) problem and make the computation of 
accurate positions a challenging task.  The trilateration problem is then described “In a 
Nutshell” and a key Gdop bound result is presented; all with the minimum of mathematics.  
Performance analyses using the DOP  paradigm are then presented for a range of specimen 
tracking range geometries.  Our support metric technique is then presented to illustrate the 
greater discrimination achieved both on specimen geometries and in a real world example – 
the European Loran chains.  Our conclusions are then plainly stated. 

Underwater Positioning – Key Differences from GNSS 
Almost all of the trilateration literature [see, for example, 2 – 23] addresses radio navigation; 
from early works on Loran (and Gee), through the early days of GPS, to contemporary GNSS 
and mobile phone tracking.  Consequently, the mode of operation and important issues for 
underwater positioning can differ appreciably from those of interest in radio navigation.  The 
following paragraphs identify some of the key differences between underwater positioning 
and GNSS. 

Clock performance is typically a significant issue for underwater positioning systems.  
Somewhere in the system sub-Rubidium performance will commonly “be a problem”.  At a 
minimum this will require the system to estimate emission times and work from pseudo, 
rather than absolute, ranges.  One consequence, is that an additional pseudo range 
measurement is required – which in turn requires a higher sensor density.  Another, more 
significant, consequence is that position fixing outwith the sensor array is very imprecise – an 
issue which is perhaps less problematic for GNSS systems. 

Propagation velocity is invariably an issue.  The speed of sound in water invariably varies 
with depth, time of year, time of day and location.  At a minimum it must be directly 
measured, and such is its variation with depth that its harmonic mean must be used.  The 
most radical difference from radio navigation is that the uncertainty of propagation velocity 
can be sufficiently large to significantly affect position solutions.  Again, working within a 
(preferably symmetric) sensor array is the most effective mitigation. 

Unfortunately, many other difficulties are attributable to propagation velocity – specifically to 
its variation with depth.  GNSS requires mitigation of ionosperic and tropospheric 
propagation effects at low elevation angles, and has the option of masking out low elevation 
satellites.  As most channels of interest are longer than they are deep, underwater 
positioning is typically performed at low elevation angles.  Consequently, shadowing and 
variable path lengths due to refraction are the norm, both imposing (sometimes absolute) 
constraints and requiring ingenuity in system design. 

An important consequence of the “shallow” environment in which underwater positioning is 
performed is that in general depth is measured and if necessary telemetered rather than 
estimated by trilateration.  A positive aspect of this circumstance is that the positioning 
problem becomes two dimensional, and its solution requires one fewer pseudo range 
measurement.  There are of course exceptions, such as sensor boxing, where the slant 
range is only a few times the water depth. 

Finally, we shall simply mention some of the “second order” issues which if not appropriately 
mitigated can comprehensively “ruin your day”, for example: anisotropic propagation velocity 
due to currents, multipath and surface reverberation. 

Trilateration  - In a Nutshell 
The preceding section indicated that enclosed geometries with significant symmetry are, if 
not always possible, certainly desirable.  Therefore, as these are in any case the simplest 
trilateration geometries to analyse,  we shall use them to set out the trilateration stall.  
General theories and analytic tools are of course available for arbitrary geometries.  
However, simple geometries yield both useful rules of thumb and valuable insights. 
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Trilateration Problem in 2-D 

The preceding figure depicts the trilateration problem for three sensors deployed in an 
equilateral triangle.  This configuration uses the minimum number of sensors for estimating 
2-D position (x & y) and the user clock (epoch of emission).  Further regular n-gons squares, 
pentagons, hexagons, etc can of course implement over-determined solutions.  The 
observables are the pseudo ranges ρi which differ from the true ranges di by the user clock 
offset tu and additive noise terms ni. 

Trilateration Iteration in 2-D 
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The preceding figure depicts the solution framework.  The sensor geometry is described by 
the direction cosines hi, which are aligned with the user – sensor vectors hi.  The estimated 
user position is given by the column vector θ with elements x, y and tu.  Under the standard 
assumptions of independent, equal, zero mean, Gaussian noise processes the estimator for 
the user state and the covariance of the estimate may be stated as  
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In brief, the ε is the vector of innovations or residuals, a mixture of (small) offsets and noise 
which the iterative estimator (for θ) will minimise.  θ is the estimate of position and user clock 
offset x, y, tu and potentially z which constitutes the solution to the trilateration problem.  δθ is 
an increment in the iterative computation of θ.  Cov(θ) is the covariance of the position 
estimates obtained for a specified sensor geometry H.  

DOP can now be defined, for the simple case where the ranging errors have equal 
variances, as the ratio of cov(θ) to σr

2.  In particular, the diagonal terms and their aggregates 
provide expressions for Xdop, Ydop, etc and for Hdop, Pdop and Gdop.  These DOP values 
provide an indication of estimator performance for a given user / sensor geometry, and are 
the standard method of assessing system performance [see, for example, 12, 13, 21 & 22]. 
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Obviously, Gdop the geometric dilution of precision is a multiplicative factor relating the 
uncertainty of the position estimate to the user range error σr

2.  Evidently, a low value of Dop 
is desirable – just as a good crossing angle for two lines of position is 90°.  A good way of 
obtaining a feel for Gdop values is to examine them in 2-D space for regular n-gons.  From 
this we can obtain an indication of minimum values and their location, the typical range of 
values, and for the regular n-gons which are the building blocks of most tracking ranges 
some insight into the interaction between sensor geometry and DOP. 

Levanon [23] derived a simple expression for Gdop at the centre of a regular polygon 

NGdop 2=  

evidently Gdop reduces as the square root of N, that is to halve Gdop the number of sensors 
must be quadrupled.  This square root relationship between the number of (independent) 
measurements and the accuracy of the estimate is of course unsurprising.  Nonetheless, it 
provides a strong indication of the general relationship between the number of sensors and 
accuracy.  Additionally, it can be shown that regular polygons minimise dop. 

GDOP Analysis Examples 
It does of course remain to partition Gdop between Pdop, the (xyz) position dilution of 
precision, and Tdop, the time dilution of precision.  In the 2-D case one can work with either 
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pseudo ranges, where the clock offset / emission time is estimated, or with absolute ranges 
where the clock offset / emission time is taken as known.  As the following plots show, the 
use of an absolute range system promises improved coverage, especially outside the sensor 
array. 

 
Tdop – pseudo ranges Hdop – pseudo ranges Hdop  - absolute ranges 

Important points to note are that in the pseudo range case Hdop and to a greater degree 
Tdop are only low inside the triangular sensor array.  Another important point is that the 
improved coverage of the absolute range (synchronous) case is predicated on 
synchronisation; it can readily be shown that if this assumption is violated the position fixes 
are totally compromised.  The benefits of working inside the sensor array, preferably with a 
balanced sensor geometry are evident. 

Our illustration of the trilateration performance of n-gons is completed by the following Gdop 
plots for a triangle, a square, a pentagon and a centre point hexagon.  These figures include 
all the regular polygons commonly used as elements of tracking ranges.  The centre-point 
hexagon is of course a tiling of equilateral triangles, the tiling commonly used for tracking 
ranges.  Regular tilings of the plane are of course only available for triangles, squares and 
hexagons.  Additionally, analysis of normalised coverage (area / sensors) for a regular array 
under the constraint of a maximum inter sensor spacing clearly demonstrates the optimality 
for many requirements of a regular tiling of equilateral triangles. 

  
Gdop - triangle Gdop - square 
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Gdop – pentagon Gdop – centre-point hexagon 

Again, the location of good coverage is within the sensor array especially where the sensor 
geometry is balanced.  Nonetheless it is evident that Dop has limitations as an analytic 
metric.  Firstly, it does not implicitly identify the weakness of working outside the sensor 
array.  Secondly, it is difficult to normalise for an effective visual appreciation of support for 
tracking at all locations. 

An Alternative Metric to DOP 
The simplest way to motivate our alternative metric is to recast the covariance expressions 
firstly in terms of determinants and then in terms of the lengths, areas and volumes defined 
by the direction cosines of the H matrix.   

The expression for DOP can be reformulated in terms of the trace of the matrix (HTH)-1  
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where h’ij is the ij th element of H’s adjoint matrix. 

As the denominator dominates this formulation for Gdop (we shall offer insight as to why 
later) maximising the discriminant |H| should maximise Gdop.  Now, it is well known, that that 
the determinants of real n x n matrices are equivalent to volumes in n-dimensional Euclidian 
space; see e.g. Birkhoff and Mac Lane [24].  In particular for a 2-D problem employing 
3 sensors 
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In this example the area equivalent to the determinant is that enclosed by the three direction 
cosines pointing towards the sensors.  The 1’s in the 3 x 3 matrix are of course the terms 
associated with the user epoch.  The notation hx and hy indicates the x and y components of 
the direction cosines. 
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Papers by Phillips [19] and Massatt and Rudnick [20] comprehensively developed the 
expression of DOP in terms of lengths, areas and volumes.  For example, given perfect 
knowledge of the z coordinates, the expression for Hdop in the 3 sensor case is 

xy
i

xy blHdop
i

2
3

1

2∑
=

=  

where lxyi is the length of the projection on the xy plane of the side opposite the ith direction 
cosine and bxy is the area of the projection of the convex hull of the direction cosines onto the 
xy plane. 

From this formula for Hdop we can see that the numerator, which is the root sum of squares 
of the lengths of the sides of the triangle, will vary much less than denominator.  
Consequently, as was observed earlier in this section, maximisation of the area bxy or 
equivalently |H| effectively minimises DOP. 

The following plots of normalised area demonstrate the sensitivity of the alternate metric to 
the support provided by a given sensor / user configuration for the usual sensor arrays: 
equilateral triangle, square, pentagon and centre point hexagon. 

  
Support – equilateral triangle Support - square 

  
Support - pentagon Support – centre-point hexagon 
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Self evidently the support metric provides a strong indication of both good and poor 
positioning geometries.  The low values for support towards the edges and outside the 
sensor array do of course concur with the practitioner’s expectation and experience. 

Most importantly, the support metric can meaningfully address real world problems with 
arbitrary sensor locations.  As an example we present an analysis of several of 
configurations of the European Loran chain(s). 

 
Baseline + Anthorn +Anthorn + Loop Head 

The baseline configuration comprises the “French” and “Norwegian” chains; Soustons, 
Lessay & Sylt and Værlandet, Ejde, Jan Mayen, Bø & Berlevåg respectively.  The projection 
is UTM zone 31 (3° E) and the size of the grid squares 1000 km.  The improved coverage 
with the addition of the UK station at Anthorn is evident.  The additional improvement 
available were the Loop Head station operational is also plain.  A range cut off of 2000 km 
has been applied to the analysis – this is broadly the prudent navigator’s limit of dependable 
ground wave coverage.   Equally, the prudent navigator would probably consider the 
coverage adequate for general navigation to the 50% or 40% support boundary, and beyond 
that for carefully observed and qualified fixes. 

Conclusions 
This paper has described an insightful analysis technique for underwater tracking range 
design.  The support metric has been demonstrated using a mixture of examples, and its 
strong agreement with the standard rules of thumb demonstrated.  The support metric is of 
course ideally suited to problems involving tens of sensors, propagation constraints and 
bottom bathymetry where detailed, analytic modelling is essential.  The applicability of the 
support metric and related techniques to Loran coverage analysis has been demonstrated.  
The technique is undoubtedly applicable to many other sensor network analysis and 
optimisation problems. 

We consider, based on practical experience, that the techniques presented are an example 
of a good theory, which appropriately applied, benefits the art of navigation.  Once again to 
quote Kurt Lewin [1] “There is nothing so practical as a good theory”. 

Emeritus Solutions Ltd is experienced in the analysis and synthesis of underwater tracking  
range layouts, with a profound understanding of the applicable mathematics underpinning 
their analysis tools.  Emeritus Solutions Ltd can provide (bespoke) tools for requirements 
ranging from range layout analysis and synthesis, through the computation of tracking 
solutions and sensor boxing, to the detailed analysis of range and environmental data.  
Additionally, Emeritus Solutions Ltd has comprehensive underwater acoustic, digital signal 
processing, computing and electronics competencies.  These offerings can be provided on a 
turnkey, service or consultancy basis. 
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